FREQUENTLY ASKED QUESTIONS ABOUT THE COMMON CORE STATE STANDARDS AND GIFTED EDUCATION

What is the rationale for the gifted education community to become involved with the Common Core State Standards effort?	*What are the approaches to use in differentiating the Mathematics standards?*
How do we align the Common Core State Standards to gifted education programming standards?	*How do we differentiate assessments based on the Common Core State Assessments?*
In what ways does the Common Core State Standards implementation relate to various program models in gifted education?	*What are the professional development implications for implementing the Common Core State Standards?*
What is the research support for differentiating the Common Core State Standards for gifted learners?	*What is a possible timeline for implementing the Common Core State Standards locally?*
What are the approaches to use in differentiating the English Language Arts standards?	*What resources are available to assist with the implementation process?*

What is the rationale for the gifted education community to become involved with the Common Core State Standards effort?

The adoption of the Common Core State Standards (CCSS) in almost every state is cause for gifted education as a field to reflect on its role in supporting gifted and high-potential learners appropriately in the content areas. As a field, we have not always differentiated systematically in the core domains of learning, but rather focused on interdisciplinary concepts, higher-level skills, and problem-solving, typically across domains. With the new CCSS, it becomes critical for us to show how we are differentiating for gifted learners within a set of standards that are reasonably rigorous in each subject area.

It has been stated by some that the CCSS core does not require any special differentiation for the gifted, and may obviate the need for gifted education services since the standards are already high level. Unfortunately, although the Standards are strong, they are not sufficiently advanced to accommodate the needs of most gifted learners. As the CCSS developers have noted, some students will traverse the Standards before the end of high school, which will require educators to provide advanced content for them. Beyond accelerative methods, however, there is also a need to enrich the standards by ensuring that there are open-ended opportunities to meet the standards through multiple pathways, more complex thinking applications, and real world problem-solving contexts. This requires a deliberate strategy among gifted educators to ensure that the CCSS are translated in a way that allows for differentiated practices to be employed with gifted and high-potential students.

As with all standards, new assessments likely will drive the instructional process. As a field, we must be aware of the need to differentiate new assessments that align with the CCSS as well. Gifted learners will need to be assessed through performance-based and portfolio techniques that are based on higher-level learning outcomes than the new CCSS may employ.

While the new CCSS are a positive movement for all of education, it is important to be mindful of the ongoing need to differentiate appropriately for our top learners within them. As a field, it is also critical that we agree on the need to align with this work so our voices are at the table as the CCSS become one important basis, along with the newly revised InTASC Model Teacher Standards, for elevating teacher quality and student learning nationwide.
How do we align the Common Core State Standards to gifted education programming standards?

All differentiation is based on an understanding of the characteristics of gifted and high-potential students and the content standards within a domain. The new Common Core State Standards (CCSS) require the field of gifted education to examine its practices and align them more fully to the NAGC Pre-K-Grade 12 Gifted Programming Standards for curriculum, instruction, and assessment. Since the gifted programming standards in curriculum require us to engage in two major tasks in curriculum planning—alignment to standards in the content areas and the development of a scope and sequence—using the CCSS is a natural point of departure. The effort must occur in vertical planning teams within districts and states in order to ensure consistency and coherence in the process. There are three major strategies that may be employed to accomplish the task for gifted education:

1. Provide pathways to accelerate the CCSS for gifted learners.

Some of the CCSS address higher-level skills and concepts that should receive focus throughout the years of schooling, such as a major emphasis on the skills of argument in English Language Arts and the skills of patterning and problem-solving in Mathematics. However, there are also more discrete skills that may be clustered across grade levels and compressed around higher-level skills and concepts for more efficient mastery by gifted students.

2. Provide examples of differentiated task demands to address specific standards.

Standards like the research standard in English Language Arts and the data interpretation standard in Mathematics lend themselves to differentiated interpretation through demonstrating what a typical learner on grade level might be able to do at a given stage of development versus what a gifted learner might be able to do. The differentiated examples should show greater complexity and creativity, using a more advanced curriculum base. While typical learners might interpret a grade-level graph to satisfy the data interpretation standard in Mathematics, the gifted learners might use real world and multiple data sets to interpret and show trends in data over time. In English Language Arts, while typical learners might learn the parts of speech and practice their application across grades K-8, gifted learners might instead explore the relationship of these parts of speech and their function in different sentence patterns at an earlier stage of development. Other degrees of differentiation may take place by adding complexity to the task and using enrichment techniques that address student needs and district demographics.

3. Create interdisciplinary product demands to elevate learning for gifted students and to efficiently address multiple standards at once.

Since English Language Arts and Mathematics standards can be grouped together in application, much of the project work that gifted educators might already use could be revised to connect to the new CCSS and show how multiple standards could be addressed across content areas. For example, research projects could be designed that address the research standard in English Language Arts and the data representation standard in Mathematics by delineating a product demand for research on an issue, asking researchable questions, using multiple sources to answer them, and then representing findings in tables, graphs, and other visual displays that are explained in text and presented to an audience with implications for a plan of action. Such a project might be possible for the gifted learner at an earlier grade than for a typical learner.

In what ways does the Common Core State Standards implementation relate to various program models in gifted education?

As gifted program service models vary, so do the implementation implications for the Common Core State Standards (CCSS). Gifted students receive services within heterogeneous settings, cluster-grouped classrooms, pull-out models, and self-contained classrooms.

For teachers of gifted and high-potential learners served in the heterogeneous, general education classroom with flexible grouping, the CCSS can serve as benchmarks for what all students should know, though educators should be careful not to limit curriculum for high-ability students based on the foundational expectations that would be provided to general education learners. In fact, those who are advanced, as is noted in the introduction to the CCSS, may show mastery of content standards much sooner than other learners. As the CCSS authors acknowledge the limited nature of the standards in addressing the needs of the gifted, teachers must then modify learning experiences for these students.

To address the curricular needs of gifted and high-potential students, teachers can differentiate curriculum through posing progressively more complex issues, adjustment of texts according to each student’s reading level and interest, modification of mathematical processes according to those previously mastered, and pace of instruction. While the CCSS provide indicators of general levels of performance for all students, teachers will need to modify learning so that gifted learners are provided appropriately challenging, stimulating experiences throughout the instructional day for continued progress.
In cluster-grouped classrooms, teachers can use the CCSS as a basis for preassessment of where students are performing, and adjust grouping according to students’ abilities, interests, and strengths with respect to literacy or Mathematics. Teachers can group high-ability students flexibly throughout the school day to allow students the opportunity to regularly engage with peers of similar abilities and interests according to individual literacy or mathematical skills addressed in the CCSS (such as speaking or reading and writing) or by a combination of skills.

Teachers who serve gifted students in pull-out models, where gifted students spend a portion of their school day (or week) in a setting other than their general education classroom, are encouraged to consider how their infusion of literacy and numeracy address the CCSS and how the experiences offered in the pull-out setting offer advanced learning experiences beyond those that would be provided in the general education classroom. Teachers of the gifted in pull-out classrooms are encouraged to remain informed of the content and scope of literacy experiences afforded students in the regular classroom setting so that gifted program experiences provide opportunities for greater depth, complexity, critical-thinking opportunities, creative production, and research based on the individual needs of gifted students as reflected in the use of ongoing assessment information.

Gifted students who are served throughout the school day with gifted peers in self-contained classrooms engage in a range of literacy experiences as different content areas are addressed. Teachers of the gifted in these classrooms use the CCSS as developmental guidelines for grade-level expectations for all students, though gifted learners with advanced skills in literacy and numeracy often evidence proficiency early in the school year or acquire these foundational skills at a pace that is faster than general education peers or even their gifted education peers. Thus, appropriate grouping within the self-contained classroom is recommended according to literacy and numeracy abilities. The curriculum should be qualitatively different from the curriculum offered to general education students according to the needs of students in terms of rate of learning, depth of content, difficulty of products, and complexity of thinking processes.

The models of delivery are largely not addressed in the CCSS, allowing teachers and schools to implement services based on the needs of gifted students with the CCSS as a basis. Though gifted program design and delivery will be informed by these Standards, programs and services for the gifted should be largely guided by assessment data on the ability levels of students as well as best practices for serving gifted students in each of the core subject areas.

What is the research support for differentiating the Common Core State Standards for gifted learners?

Evidence-based practices that inform the teacher preparation and programming standards in gifted education relate to assessment, curriculum, instruction, and grouping issues, all of which are embedded within the Common Core State Standards (CCSS). These practices have an extensive research base.

The most salient examples of these practices follow:

- Preassessment and ongoing assessment can help educators adjust instruction for a positive educational experience since the pace of instructional delivery should be consistent with the individual student’s progress.
- Assessments should be used to document academic growth and may include performance, products, and other tasks that are authentic to the domain.
- In the classroom, curricular modifications for gifted students include acceleration, enrichment, grouping, cluster grouping, problem-based learning, curriculum compacting, tiered lessons, independent study, and the use of specific curriculum models.
- By engaging gifted individuals from diverse backgrounds in challenging curricula, educators are more likely to recognize their abilities and potential, understand differing points of view and cultures, and reduce underachievement. Working in groups with other gifted students can yield academic benefits as well as enhance self-confidence and communication skills.

What are the approaches to use in differentiating the English Language Arts standards?

Common Core State Standards in English Language Arts (ELA) identify K-12 grade-level literacy performance expectations in reading, writing, speaking, listening, and language, with specific benchmarks by grade for developmental progress. The ELA standards were designed to prepare students to become critical consumers of literature and informational texts across disciplines and are primarily framed as developmental processes that these students would be able to demonstrate by the end of a given grade level of instruction. As is noted in the ELA standards’ preamble, the curriculum, instruction, and scope of learning is not prescribed;
educators are given great latitude in how to obtain these achievement goals and in which learning goals to infuse into the curriculum or instruction.

Guided by assessment data, the ELA standards suggest that teachers are responsible for tailoring learning experiences for gifted students to foster the continued development of advanced skills, knowledge, and conceptual understanding. Instructional approaches in reading, for example, could include matching gifted readers with texts that are commensurate or slightly above their documented reading level. Gifted and high-potential readers may also benefit from other instructional approaches recognized as beneficial for advanced readers, such as Socratic Seminars and literature circles. In line with the ELA standards’ recommendations, to promote students’ continued development of research skills, teachers of the gifted may also infuse opportunities for research in students’ areas of interests as well as creative production. Teachers of gifted writers may encourage the development of advanced writing skills through writing competitions, production in public venues, or staging of a student’s original writing through drama, poetry readings, mentorships with local writers or other writing experts, or in-class response groups comprised of classmates with similar advanced writing abilities. Teachers of gifted and high-potential students also should be mindful of the importance of providing conceptual units of study that foster interdisciplinary thinking, examination of complex issues, problem finding, and problem solving to stimulate discussion, debate, reasoning, and related skills of persuasion, which are progressively targeted as learners move from K-6 through secondary education.

Instructional pace is also a critical consideration in the education of gifted students. As noted in the Common Core State Standards document, advanced learners may demonstrate rapid or early mastery of the standards. Depending on an individual student’s rate of learning, which might differ depending on the ELA areas in which a student excels, curriculum should be made more advanced and challenging in that area. For example, a student who enters kindergarten reading at the second-grade level should receive instruction pitched at third-grade books and materials with matching comprehension questions and writing assignments. Teachers are responsible for monitoring the pace at which a gifted learner responds and adjusting pacing appropriately.

What are the approaches to use in differentiating the Mathematics standards?

The Common Core State Standards (CCSS) in Mathematics have significant implications for the teaching of Mathematics in grades K–12. Our collective future lies in the individual development of students with mathematical promise, students who will fulfill their own potential and also provide leadership for others. This individualized developmental approach includes students who traditionally have been identified as gifted, talented, advanced, or precocious in Mathematics as well as those students with potential who may have been excluded from the rich opportunities that might accompany this recognition. As with all students, these students with special needs deserve a least restrictive learning environment that lifts the ceiling, fuels their creativity and passions, pushes them to make continuous progress throughout their academic careers, and supports them in the fulfillment of their personal potential.

When considering the implications of the CCSS for the development of mathematical talent, it is important to take into account the eight Standards for Mathematical Practice that educators should seek to develop in their students as well as the individual Mathematics content standards. For example, the Standards for Practice expect proficient students to reason abstractly and quantitatively, persevere in solving difficult problems, and construct and critique viable arguments to support their reasoning. Students need a chance to experience the joy of investigating rich concepts in depth and applying innovative mathematical reasoning and justification to a variety of scientific, engineering, and other problems.

The instructional pace is also a critical consideration in the education of gifted students in Mathematics. The CCSS document suggests that advanced learners may demonstrate rapid or early mastery of the Mathematics standards, requiring accelerative opportunities at key stages of development.

Teachers of the gifted also should be mindful of the importance of providing problem finding and problem-solving skills and strategies to stimulate mathematical reasoning, spatial reasoning, and work with number theory. As applied skills to conducting meaningful research, early exposure of gifted learners of probability, statistics, and logic are viable approaches to be used.

How do we differentiate assessments based on the Common Core State Assessments?

Though end-of-grade performance expectations are identified in the Common Core State Standards (CCSS), teachers must also consider how differentiation of classroom assessments can be tailored to support the ongoing development of each student’s literacy and numeracy, in order to meet gifted students’ unique academic and social-emotional needs.

For example, in English Language Arts (ELA), curriculum may be modified with more advanced content (more difficult material, greater depth of exploration), more challenging readings (increased in alignment with students’ reading levels), and projects that challenge students to stretch beyond their current level of performance through assessments that appropriately gauge the growth of the advanced learner. With the ELA standards’ inclusion of literacy development across subject areas, ample opportunities for interdisciplinary and interest-driven learning are possible but require careful instructional design so that gifted students are afforded
learning geared to their continued development as assessed regularly by the classroom teacher. Thus product-based assessment is a crucial approach in this process.

Similarly, students with potential in Mathematics should experience rigorous Mathematics courses through a carefully constructed, compacted and telescoped curriculum. This requires the use of preassessments and ongoing assessments to ensure that the knowledge and skills are matched to the student’s current level of achievement and that above grade-level curriculum is provided for acceleration. Information about possible accelerated pathways for advanced high school students can be found in Appendix A of the CCSS for Mathematics. (See http://www.corestandards.org/ for additional information.)

NOTE: Federal Race-to-the-Top Assessments grants were awarded to two consortia of states that are developing vertically aligned state end-of-year assessments based on the CCSS that will provide both summative and formative assessment information. Forty-four states belong to one or both of the consortia, whose assessments are now being piloted and are expected to be in use in 2014. For more information about the work of the consortia, visit Smarter Balanced Consortium and the PARCC Consortium.

What are the professional development implications for implementing the Common Core State Standards?

Professional development is essential for all educators, who ideally are engaged in learning communities to identify specific knowledge and skills needed to serve different groups of learners. As schools and school districts adopt and begin using the Common Core State Standards (CCSS), all educators should be involved in ongoing learning to address the needs of gifted and high-potential students. Specifically, all educators need a repertoire of research-supported strategies to deliberately adapt and modify curriculum, instruction, and assessment within the framework of the CCSS, based on the needs of gifted and talented students as well as those with high potential.

While the CCSS provide the framework for the learning experiences for all students, gifted educators need focused training that is content-specific for differentiating the standards. Systematic professional development will support all educators to adapt, modify, or replace the CCSS based on the needs of the learner. To differentiate effectively for gifted and high-potential learners, all educators need to develop expertise at designing learning experiences and assessments that are conceptually advanced, challenging, and complex.

Professional development for implementing the CCSS for gifted and high-potential learners should focus on evidence-based differentiation practices as they relate to specific core content. The training should demonstrate how to apply acceleration strategies, how to add depth and complexity elements, such as critical thinking, creative thinking, problem solving, and inquiry, and how to develop and encourage creativity, all within the CCSS. In addition to the curriculum adaptation and modification, the professional development experiences should also demonstrate content-specific ways to design and implement differentiated product-based assessments as well as pre- and post-assessments appropriate for advanced students.

What is a possible timeline for implementing the Common Core State Standards locally?

Implementation of the Common Core State Standards (CCSS) at the K-12 level encompasses several varied but necessary tasks. For example, in Mathematics, both the Standards for Mathematical Practice addressing process and proficiencies and the Standards for Mathematical Content must be taken together as a way in which we can develop mathematical practitioners and mathematical expertise, not just proficient math students. A first step towards implementation is to become familiar with both sets of standards. Next, look at current practices, analyzing them to determine if there are gaps between current practices and practices that would reflect the CCSS. Where gaps have been identified, adjust content, process, products, and assessments to reflect the new Mathematics Standards, bearing in mind that student outcomes should be aimed at developing expertise. Gather resources and consult with content specialists and gifted education specialists to assist with realignment. Provide professional development to ensure school personnel understand the new Standards and the changes needed to implement them for gifted and talented and high-potential students.
A sample timeline for implementation of the CCSS in Mathematics

<table>
<thead>
<tr>
<th>Task</th>
<th>Person(s) Responsible</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Know and understand the CCSS in Mathematics</td>
<td>All school personnel</td>
<td>August - September</td>
</tr>
<tr>
<td>Gather evidence to determine the extent to which current practices reflect the practice</td>
<td>Teacher representatives at each grade level, building level</td>
<td>October-December</td>
</tr>
<tr>
<td>standards; identify gaps in practice and or content.</td>
<td>administer, gifted specialist</td>
<td></td>
</tr>
<tr>
<td>Gather evidence to determine the extent to which current content reflects the content standards; identify gaps in practice and or content.</td>
<td>Teacher representatives at each grade level, building level administrator, gifted specialist, math specialist</td>
<td>October-December</td>
</tr>
<tr>
<td>Make adjustment to practices and content to reflect gaps that were identified.</td>
<td>All teachers</td>
<td>January-March</td>
</tr>
<tr>
<td>Gather resources and assist with realignment.</td>
<td>GT coordinator, building administrator, math specialist, & other necessary personnel</td>
<td>January-March</td>
</tr>
<tr>
<td>Provide professional development to prepare all teachers for full implementation of the CCSS for gifted and high-potential students.</td>
<td>GT coordinator, building administrator, math specialist, & other necessary personnel</td>
<td>April-July</td>
</tr>
<tr>
<td>Provide ongoing support for full implementation.</td>
<td>GT coordinator, building administrator, math specialist, & other necessary personnel</td>
<td>August-July</td>
</tr>
</tbody>
</table>

What resources are available to assist with the implementation process?

There are a variety of resources that can assist university personnel, administrators, and coordinators of gifted programs at state and local levels in implementing the new CCSS for gifted learners, including assessments that measure the depth and breadth of a student’s knowledge within a domain of talent development; curriculum units of study that are already differentiated and research-based; instructional strategies that employ the use of higher-order thinking skills; and programming options that include acceleration, enrichment, and extended learning beyond the classroom.

The new NAGC Pre-K-Grade 12 Gifted Programming Standards should be used as a tool to understand the elements that a differentiated curriculum for the gifted learner would include. For university personnel, it would be helpful to review the gifted education teacher preparation standards to see the extent to which there is alignment to the new CCSS.